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Abstract

Crazing in amorphous polymers under mode I loading conditions is simulated using the concept of embedded co-

hesive surfaces with a recently proposed model. The dependence of the predicted crack growth resistance on the crazing

material parameters is studied. In general, for constant loading rate, a lower fracture toughness is predicted for shorter

craze lengths. However, since the widening of the craze is of a viscoplastic nature, this trend can be reversed for in-

creasing loading rate. The parameter variations indicate that the perfectly plastic Dugdale cohesive zone model is not

applicable to crazing. Mesh sensitivity with respect to length and orientation of the cohesive surface elements is also

studied. Convergence of crack growth resistance and crack path predictions can only be expected for very ®ne, ran-

domly oriented meshes. Ó 2000 Published by Elsevier Science Ltd.
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1. Introduction

Amorphous glassy polymers, such as polystyrene and PMMA, fail due to crazing. Crazing starts with
the nucleation of microvoids in regions of stress concentrations and is primarily normal to the maximum
principal stress. These voids do not coalesce to form cracks, but highly stretched molecular chains or ®brils
stabilize this process to create a crack-like feature bridged by ®brils: a craze. However, after further craze
widening, ®brils break down and a microcrack is formed.

Depending on the type of polymer, the stress state, loading rate, temperature etc., the ultimate fracture
occurs by the propagation of crazing and cracking, or by the linking-up of large numbers of microcracks. In
the ®rst case, one observes a macroscopically ¯at fracture surface. Multiple crazes and cracks are very
typical in many blends of amorphous polymer toughened by rubber particles. Again, depending on the
material and conditions, the bulk material can remain elastic during crazing or may take place in com-
petition with plastic ¯ow (or shear yielding). In fact, the latter competition will control the transition be-
tween brittle and ductile fractures in polymer±rubber blends.

Various attempts have been made to model the crazing process at di�erent length scales (Brown, 1991;
Xiao and Curtin, 1995; Hui et al., 1992). However, there is a large gap in length scale between detailed
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studies on the crazing process itself and the role of crazing in polymer fracture. To understand the role of
crazing during failure of polymers, a new cohesive surface model for crazing has been developed by Tijssens
et al. (2000). This model aims at a description of crazing at a characteristic length scale of several microns
such that the simulation of failure of polymers or blends becomes feasible. The cohesive surface model
captures the essential features of crazing within an e�ective traction±separation law spanning the total
lifetime of a craze, i.e., from initiation of a craze nucleus until breakdown of the ®brillated polymer material.

This cohesive surface model has been employed by Estevez et al. (2000) for the ®rst study of the in-
teraction between plastic ¯ow and crazing. They used a single cohesive surface in front of an initially blunt
crack under mode I conditions. Crack de¯ection and crack bridging are excluded in such a model. As
mentioned above, there is a large class of fracture situations which do involve multiple or even high
densities of crazes. Using the concept of embedded cohesive surfaces, as pioneered by Xu and Needleman
(1994), crazing can be simulated without a priori assuming a predetermined craze path.

In this paper, we adopt this idea and embed cohesive surface elements for crazing in a standard ®nite
element discretization of the continuum representing the bulk polymer. This methodology is applied to
study how an existing sharp crack propagates by crazing. Thus, failure can potentially occur along the
edges of continuum elements, and the ®nal crack can ®nd its own path without criteria other than in the
cohesive surface law. The dependence of the predicted crack growth resistance on the material parameters
in the craze model is studied. Due attention is also given to the sensitivity of the predictions to mesh density
and orientation.

2. Material model

This section brie¯y reviews the model presented in Tijssens et al. (2000) wherein detailed information on
the cohesive surface model can be found.

2.1. Cohesive surface idealization for crazes

Crazes in amorphous polymers generally reach lengths in the order of tenths of millimeters, whereas the
width (or thickness) of the craze remains in the order of several micrometers. Neglecting its thickness,
Tijssens et al. (2000) replaced a craze by a cohesive surface, as illustrated in Fig. 1. The separation between
two initially adjacent material points, one situated in the upper bulk±craze interface and the other in the
bottom bulk±craze interface is described by a separation vector D with normal component Dn and tan-
gential component Dt with respect to the midplane of the cohesive surface. The traction vector T is en-
ergetically conjugate to D and has components Tn and Tt. The properties of the craze matter are captured in
a traction±separation law, which will be speci®ed below.

The crazing process is described with three separate stages: (i) the initiation of a craze, (ii) subsequent
widening of the ®brils and (iii) ®nal breakdown of the ®brillar material. A typical traction±separation law
for a craze is shown in Fig. 2. Initiation of a craze is taken based on the stress-state dependent criterion
proposed by Sternstein et al. (1968). In this particular criterion, the cohesive surface normal traction Tn and
the hydrostatic stress rm are both responsible for the initiation of a craze, according to

f �Tn; rm� � 3

2
rm ÿ 1

2
A� B

6rm

ÿ Tn �1�

in which A and B are temperature dependent constants. Starting from an unstressed state, f �Tn; rm� remains
positive until the state of stress is such that f �Tn; rm� � 0. At this instant, a craze is initiated. Stress states
for which f �Tn; rm� < 0 cannot be reached without triggering crazing. After craze initiation, Eq. (1) be-
comes meaningless.
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Once a craze is initiated, widening of the craze is assumed to be a process of drawing in new polymer
material from the craze±bulk interface (Kramer, 1983; Kramer and Berger, 1990). This is illustrated
schematically in Fig. 3. Motivated by the early qualitative analysis of Kramer and Berger (1990) and of
Leonov and Brown (1992) and partly by the numerical results of the more quantitative study in Van der
Giessen and Lai (1997), Tijssens et al. (2000) proposed a rather phenomenological constitutive description
of craze widening in which the normal separation rate _Dc

n as a function of the normal stress Tn is given by

_Dc
n � _D0 exp

�
ÿ A�rc

T
1

�
ÿ Tn

rc

��
: �2�

Here, A�, _D0, and rc are material constants; _D0 is a reference separation rate (which is attained when Tn

reaches values as high as rc); A� governs a linear drop in normal traction Tn with temperature T at a given
separation rate _Dc

n and rc is the athermal stress for craze widening.

Fig. 1. Schematic of modeling a craze (a) by a cohesive surface (b) characterized by a traction T and a separation D over this surface.

Fig. 2. Schematic of the traction±separation law for a craze. The numbers indicate (1) craze initiation followed by softening, (2) rate

dependent surface drawing stress and (3) ®nal breakdown.
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The material inside a craze has a complex structure in which long cylindrical ®brils of polymer material
are interconnected by cross-tie ®brils which give the craze some tangential load carrying capacity while it
widens. In a cohesive surface representation, we account for a resistance against tangential separation in
terms of a constitutive description of _Dc

t as a function of Tt. Because the geometry of the craze material
suggests a coupling between the tangential separation and the normal separation model, Tijssens et al.
(2000) proposed the following viscoplastic tangential separation law similar to Eq. (2):

_Dc
t � _C0 exp

��
ÿ A�sc

T
1

�
ÿ Tt

sc

��
ÿ exp

�
ÿ A�sc

T
1

�
� Tt

sc

���
�3�

in which _C0 and sc are material parameters. Note that in contrast to the normal viscoplastic widening law
(2), an extra term is included which ensures that _Dc

t is an odd function of Tt. To limit the number of material
parameters, we follow Tijssens et al. (2000) and use _C0 �

���
3
p

_D0 and sc � rc=
���
3
p

.
Although the precise mechanism that governs craze breakdown is still not known, transmission electron

microscopy (TEM) observations of craze breakdown (Kramer and Berger, 1990) show that upon break-
down, a pear-shaped void initiates at the craze±bulk interface which gradually grows in size upon further
increasing the width of the craze. In a cohesive surface model, it is not known a priori how fast such a void
expands nor is it known what its initial size is. This is inevitably related to the size of the imperfections and
the molecular weight of the polymer. Recently, important theoretical progress has been made in under-
standing the kinetics of craze breakdown. Brown (1991) was the ®rst to point out the important role of the
cross-tie ®brils, followed by more detailed models of Hui et al. (1992) and Sha et al. (1997). However, the
theoretical knowledge regarding craze breakdown is far from complete and still much further research seems
necessary to arrive at a satisfactory description of craze breakdown kinetics on the length scale that we are
aiming for in our cohesive surface description. We therefore follow the experimental results of D�oll et al.
(1979) from which it is concluded that craze breakdown occurs as soon as the plastic craze opening Dc

n

reaches a critical value Dc;cr
n which is taken to be constant with respect to time, temperature and loading rate.

2.2. Numerical implementation

Following Tijssens et al. (2000), we account for ®nite strains in the continuum description, using a total
Lagrangian description. The numerical solution of the equilibrium equations is obtained using a linear

Fig. 3. Illustration of the surface drawing mechanism.
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incremental analysis within the ®nite element context. For each discrete time step Dt during the incremental
procedure, equilibrium is speci®ed through the rate form of the principle of virtual work:

Dt
Z

V
� _sijdgij � sik _uj

;kduj;i�dV � Dt
Z

Si

_TadDa dS � Dt
Z

Su

_tidui dS ÿ
Z

V
sijdgij dV

�
�
Z

Si

TadDa dS

ÿ
Z

Su

tidui dS
�

�4�

in which V and Su are the volume and outer surface of the body in the reference con®guration, respectively,
and Si is the current internal cohesive surface. The latter is the collection of all cohesive surfaces contained
in V. Here, V is discretized by linear triangular elements, and cohesive surface elements may be introduced
essentially in between all adjacent elements (but for practical reasons con®ned to a subregion of V). The
term in Eq. (4) between square brackets is the equilibrium correction which is zero for a state of perfect
equilibrium. This term is included to prevent drifting of the solution from the true equilibrium path due to
the ®nite time increments.

Inelastic deformation of the polymer is assumed to be limited here to crazing, which is concentrated in
the cohesive surfaces. The bulk is isotropic and linear elastic with elastic strains remaining small. For
computational convenience, this is implemented in terms of the relation,

_sij � Lijkl _gkl �5�
between the second Piola±Kirchho� stress s � sijeiej and the Lagrangian strain g � gije

iej, with the elastic
moduli Lijkl for an isotropic elastic material being expressed in terms of Young's modulus E and Poisson's
ratio m.

In the previous section, the constitutive description of crazes has been phrased in terms of the rate
equations (2) and (3) for the normal and tangential components � _Dc

n;
_Dc

t� of the separation vector Dc. The
constitutive description of the cohesive surfaces is completed by

_Ta � k�a� _Da ÿ _Dc
a�; a � n; t �6�

in which we employ a forward gradient scheme (Peirce et al., 1984) in order to improve the numerical
stability (Tijssens et al., 2000). The sti�ness k�a is de®ned by

k�a � ka 1

 ,
� kah

o _Dc
a

oTa
Dt

!
; a � n; t �7�

in which ka is the normal or tangential sti�ness of the cohesive surface and Dt is the time increment. For the
numerical analysis in this paper, we have used h � 0:5.

The ®nite element equations are obtained by eliminating the stress rates _sij using Eq. (5) and eliminating
the cohesive surface traction rates using Eqs. (2), (3) and (6). As pointed out by Schellekens and De Borst
(1993), the numerical integration of the sti�ness contributions of the cohesive surface elements with Gauss
quadrature may lead to numerical errors if traction gradients are large. In such cases, the numerical in-
tegration is best carried out with Newton±Cotes integration, which is the scheme adopted in this paper.

Prior to craze initiation, the plastic widening rate of the craze vanishes ( _Dc
a � 0) and the sti�ness ka is

arti®cial. Its value needs to be high so that the elastic deformation in the cohesive surfaces does not sig-
ni®cantly contribute to the overall elastic properties. Once crazing is initiated, the sti�ness ka re¯ects the
instantaneous elastic properties of the craze ®brils and part of the active material in the craze (Fig. 1). For
this reason, Estevez et al. (2000) proposed an evolution of the cohesive surface sti�ness based on the ex-
tension of the craze ®brils. In this paper, we simply treat the sti�ness kn as a constant during the entire
crazing process.
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Although initially kt must be su�ciently large for reasons mentioned above, after substantial widening,
the craze matter exhibits a low but ®nite tangential sti�ness due to the cross-tie ®brils. Tijssens et al. (2000)
proposed an exponentially decaying relation for the tangential sti�ness. However, it may be argued that the
main ®brils of the craze, immediately after craze initiation, are still quite capable of resisting tangential
deformation. The tangential sti�ness may then drop down only after a certain amount of craze widening
has occurred. Here, we therefore adopt another decaying law in which the tangential sti�ness evolves with
the craze width Dc

n according to

kt � k0
t

arctan�c1�Dc
n=D

c;cr
n ÿ c2�� ÿ arctan�c1�1ÿ c2��

arctan�ÿc1c2� ÿ arctan�c1�1ÿ c2�� : �8�

This is illustrated in Fig. 4. The in¯uence of the constants c1 and c2 will be studied later.
As mentioned above, the forward gradient-based relation (6) is used for the overall sti�ness matrix.

Rather than using this for a � n also to compute the incremental normal traction, DTn � _TnDt, we use the
exact solution for the increment of the normal traction, which is obtained by substituting Eq. (2) into Eq.
(6). Integrating the resulting equation over the time interval �t; t � Dt� and invoking that the normal sep-
aration rate _Dc

n is constant over this interval, we obtain

DTn � ÿ T
A

ln 1

 (
ÿ

_D0

_Dn

exp

�
ÿ A

T
�rc ÿ Tn�

�!
exp

�
ÿ A

T
kn

_DnDt
�
�

_D0

_Dn

exp

�
ÿ A

T
�rc ÿ Tn�

�)
: �9�

The increased accuracy of the cohesive traction updating obtained by using this increment was found to
be necessary right during the ®rst stages of craze widening. Since the tangential separation is expected to
remain relatively small and the exact solution is computationally expensive, we use the forward gradient
updating for the tangential separation mode (a � t) according to Eq. (6).

3. Problem formulation

From experiments, it is known that crazes tend to propagate perpendicular to the direction of maximum
principle stress. In view of this, we now focus on mode I crack tip conditions to study the numerical aspects

Fig. 4. Illustration of the decrease of tangential cohesive surface sti�ness with increasing craze widening for various values of c1 and c2

from Eq. (8): (1) c1 � 100, c2 � 0:1, (2) c1 � 100, c2 � 0:5, (3) c1 � 10, c2 � 0:5, (4) c1 � 1, c2 � 0:5, (5) c1 � 100, c2 � 0:9.
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of the cohesive surface methodology and the physical aspects of the cohesive surface model for crazing.
Assuming that the length of the active, i.e., not broken down, craze remains smaller than the length of the
existing crack and any other dimensions, we adopt the boundary layer approach for the mode I plane strain
®elds near the crack tip. Crazing is assumed to be restricted to a circular region of radius Rc in front of the
initial crack tip, the so-called process window.

The remote region is taken to be bounded by a circular arc of radius R with R=Rc � 100. For this ratio, it
has been veri®ed that moving the origin of the mode I crack tip ®eld along with the current crack tip does
not signi®cantly alter the results for crack growth resistance. Along the outer arc, the mode I elastic ®eld at
a stress intensity factor (SIF) KI is prescribed via the Cartesian displacement components u1 and u2, ac-
cording to

u1 � KI

2�1� m�
E

�������
r

2p

r
cos

1

2
h 1

�
ÿ 2m� sin2 1

2
h

�
; �10�

u2 � KI

2�1� m�
E

�������
r

2p

r
sin

1

2
h 2

�
ÿ 2mÿ cos2 1

2
h

�
; �11�

where r and h are polar coordinates with the original crack tip at the origin. Traction-free boundary
conditions are imposed along the crack faces.

The ®nite element mesh is shown in Fig. 5a. To explore the capabilities of the cohesive surface for-
mulation for crazing and possible mesh e�ects, we do not use the symmetry of the problem so that we can
analyze asymmetrically discretized con®gurations. The process window, i.e., the region in which crazing can
occur, is shown in Fig. 5b. In this region, each side of the triangular elements is connected to a cohesive
surface as illustrated in Fig. 6.

4. Parameter study

This section deals with the variation of material parameters in the model. We will focus on the pa-
rameters related to craze widening and breakdown as the in¯uence of the craze initiation parameters has
already been explored in Tijssens et al. (2000) and Estevez et al. (2000). The material parameters are
grouped into the following three dimensionless parameters:

A�rc

T
;

_K2
I D

c;cr
n

_D2
0r

2
c

;
E
rc

: �12�

In all calculations, we have used the material parameters given in Table 1, unless stated otherwise.
To investigate the in¯uence of the dimensionless parameters, crazing and crack growth is con®ned to the

surface ahead of the crack, as in Estevez et al. (2000). In this way, possible mesh e�ects due to meandering
or craze branching do not obscure the results; these will be investigated separately in the subsequent sec-
tion. Also, we can then make a simple comparison with a Dugdale-like model for a craze, as has been often
used in the polymer community (e.g., D�oll et al., 1980). For a Dugdale-like cohesive zone (Dugdale, 1960)
characterized by ``perfectly plastic'' behavior with a yield stress rc and maximum separation Dc;cr

n , we can
estimate the steady state value of the mode I SIF, Kss

D. Equating the far-®eld energy release rate G � Kss2
D =E

to the energy needed to break a unit length of the idealized craze, C � rcD
c;cr
n , we obtain

K ss
D � rcD

c;cr
n E

ÿ �1=2
: �13�
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The ``plastic zone size'', i.e., the craze length, is estimated through the well-known relation

cD � p
8

Kss
D

rc

� �2

: �14�

For the default parameter values given in Table 1, we obtain Kss
D � 16:2 MPa mm1=2 and cD � 0:11 mm.

The estimates Kss
D and cD are used to normalize KI and the total crack extension Da in our simulations. The

new crack tip position a is de®ned as the horizontal location of the rightmost cohesive surface integration
point (Fig. 5b) for which full craze breakdown has occurred.

Fig. 5. Example of (a) the global mesh and (b) the unstructured process window used during the calculations.
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4.1. Parameter 1, A�rc=T

The ®rst parameter describes the linear temperature dependence of the polymer. Variation of this pa-
rameter is obtained by varying A� in the calculations. Besides the default value in Table 1, A� takes the
values 48:83, 195:3 and 1006 K=MPa. Variations in temperature are not considered here since that would
also in¯uence the stress level at which crazing initiates, as shown in Tijssens et al. (2000). The loading rate is
given by _KI � 1:0 MPa mm1=2 sÿ1. The crack growth curves, KI vs Da, predicted for various values of A�rc=T
are given in Fig. 7.

Since rc is the athermal drawing stress of the craze, decreasing A�rc=T e�ectively results in a decrease of
the drawing stress Tn during craze widening due to the more viscous nature of the drawing process. Since
the stress level at which the craze initiates is not a�ected by A�, this implies that for relatively low values of
A�rc=T , the surrounding bulk is unloaded faster, and therefore, the redistribution of stresses occurs faster
during the craze widening process. Consequently, the craze tip propagation speed increases for decreasing
A�rc=T .

According to Eq. (2), decreasing A�rc=T for constant drawing stress Tn < rc results in an increasing
widening rate _Dc

n. The ®brillar material will therefore tend to break down earlier. From Fig. 7, it is seen that
decreasing A�rc=T results in a lower SIF K0

I for crack growth initiation. However, the outcome of the

Fig. 6. Con®guration of continuum elements with cohesive surfaces.

Table 1

Default material parameters used during all calculations

E (MPa) 3240

m 0:35

rc (MPa) 30
_D0 (mm/s) 1:0� 10ÿ2

Dc;cr
n (mm) 2:7� 10ÿ3

A� (K/MPa) 100:6

A (MPa) 12

B (MPa2) 5046
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numerical analysis is a result of the competition between craze initiation, widening of already existing crazes
and unloading of the surrounding bulk. As a consequence of this competition, the lower drawing stress Tn

for lower values of A�rc=T is accompanied by an increasing craze tip propagation speed, which results in a
larger craze length c, as shown in Fig. 8. This results in a higher load carrying capacity of the craze and
hence a larger steady state value of the mode I SIF with decreasing A�rc=T , as observed in Fig. 7. The larger
Kss

I as a result of a larger c is consistent with the rate-independent Dugdale estimate in Eqs. (13) and (14).
However, the lowering of the crack growth initiation SIF K0

I cannot be predicted by the Dugdale model.

4.2. Parameter 2, K2
I D

c;cr
n =D2

0r
2
c

This parameter relates the rate of loading to the rate at which craze widening takes place. Variation of
this parameter is obtained by varying the loading rate _KI in the calculations. The values used for _KI are 0:1,

Fig. 8. Development of craze length c=cD as a function of crack length Da=cD for various values of A�rc=T .

Fig. 7. Crack growth resistance curves for variation of A�rc=T .
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0:5, 1, 2 and 10 MPa mm1=2 sÿ1. From Fig. 9, we observe that a higher value of _K2
I D

c;cr
n = _D2

0r
2
c results in a

higher steady state value of the mode I SIF. The shape of the resistance curves is hardly a�ected by the
value of _K2

I D
c;cr
n = _D2

0r
2
c .

The higher value of _KI relative to the viscoplastic widening rate of the craze results in a higher drawing
stress Tn of the craze. This can also be interpreted as e�ectively increasing the ``yield stress'' in the Dugdale
model. The slower redistribution of stresses in the continuum that is a consequence of the higher drawing
stress results in a lower craze tip propagation speed. At the same time, the higher plastic separation rate _Dc

n

results in a shorter lifetime of the ®brils.
Both the lower craze propagation speed and higher plastic separation rate _Dc

n result in a smaller craze
length c (Fig. 10). The classical Dugdale model is rate independent and would therefore reveal the

Fig. 9. Crack growth resistance curves for variation of _K2
I D

c;cr
n = _D2

0r
2
c through _KI.

Fig. 10. Development of craze length c=cD as a function of crack length Da=cD for various values of _K2
I Dc;cr

n = _D2
0r

2
c .
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opposite trend, i.e., a decrease in Kss
D with decreasing cD (Eq. (14)). For high values of A�rc=T , loading rate

e�ects are less important. This is because the separation process then tends to become perfectly plastic, as
can be seen from Eq. (2). While varying the loading rate _KI for the default parameters given in Table 1, the
in¯uence of the viscoplastic behavior of the craze widening process is important. It is the viscoplastic
nature of craze widening which results in an increase of the steady state value Kss

I even though the craze
length c decreases.

The fracture energy is a�ected in a more direct way by changing the critical craze opening Dc;cr
n . This can

be understood from the fracture energy /n � rcD
c;cr
n . In Fig. 11, the results for Dc;cr

n � 1:0� 10ÿ3, 2:7� 10ÿ3

and 6:0� 10ÿ3 mm are shown for a constant loading rate _KI � 0:1 MPa mm1=2 sÿ1. Increasing Dc;cr
n directly

increases the craze length because of the extended lifetime of the craze. As a result of this, the steady state
fracture toughness Kss

I increases. For larger values of Dc;cr
n , the steady state fracture toughness is better

approximated by Kss
D (Fig. 11).

4.3. Parameter 3, E=rc

From the elastic displacement ®elds for mode I crack tip loading given in Eqs. (10) and (11), it is clear
that for a constant loading rate _KI and increasing Young's modulus E, the norm of the displacement rates
_u1 and _u2 decreases. This also lowers the cohesive surface opening rate _Dn. The consequence of this is a
lower drawing stress Tn because of which both the craze tip propagation speed and the life time of the
®brillar material increase. Consequently, the SIF for crack growth initiation K0

I increases for increasing
Young's modulus E. E�ectively, increasing the value of E=rc results in a more slender craze since the
maximum separation of the craze±bulk interfaces Dc;cr

n is assumed to be constant. The larger craze length c
results in a higher steady-state value Kss

I of the stress intensity factor.
In Fig. 12, the crack growth resistance curves for a loading rate of _KI � 1:0 MPa mm1=2 sÿ1 are given.

Note that the value of Kss
D increases from 8:1 MPamm1=2 for E=rc � 27 to 32:4 MPa mm1=2 for E=rc � 432.

The Dugdale estimate for the steady state value K ss
I of the stress intensity factor improves for increasing

E=rc. The evolution of the craze length during crack growth is given in Fig. 13. The length of the plastic
zone cD increases from 0:029 mm for E=rc � 27 to 0:46 mm for E=rc � 432. The Dugdale estimate for the
craze length becomes worse for increasing E=rc.

Fig. 11. Crack growth resistance curves for variation of _K2
I Dc;cr

n = _D2
0r

2
c through Dc;cr

n .
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5. Convergence aspects

Once crazing is initiated, further deformation tends to localize in the cohesive surface. Localization
problems are known in general to exhibit a signi®cant mesh dependency, but the sensitivity of embedded
cohesive surface models as used here needs to be explored.

In their pioneering paper, Xu and Needleman (1994) applied the cohesive surface methodology to dy-
namic crack growth in brittle solids. Contrary to the present model designed for crazing, they used a
phenomenological, elastic constitutive law for their cohesive surface. They reported calculations in which
the orientation of the cohesive surfaces is varied and the in¯uence on the crack growth direction is studied.
Their results indicate that the cohesive surface orientation can have a signi®cant in¯uence on both the mode
of crack growth and the crack growth speed. It is hard to conclude from the results of Xu and Needleman

Fig. 12. Crack growth resistance curves for variation of E=rc.

Fig. 13. Development of craze length c=cD as a function of crack length Da=cD for various E=rc.
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(1994) whether crack growth convergence will occur upon further mesh re®nement. This section therefore
focuses speci®cally on convergence upon mesh re®nement.

5.1. Symmetric versus asymmetric and unstructured meshes

The cohesive surface model for crazing relies on a craze initiation criterion to start the crazing process.
Criterion (1) used in our model relates the cohesive normal traction Tn and the hydrostatic stress rm to a
critical stress state. Apart from the cohesive surface element length, the orientation of cohesive surface
elements will therefore have a signi®cant in¯uence on the craze path to be followed. For the mode I crack
tip loading used in this paper, a mesh providing a horizontal row of cohesive surface elements in front of
the initial crack tip gives the trivial solution of a horizontally propagating craze. The objective of the
cohesive surface methodology, however, is to model the fracture behavior of solids without a priori as-
suming a crack path to be followed. The latter should be an outcome of the analysis.

If a horizontal row of cohesive surface elements in front of the crack tip does not exist, mesh re®nement
with structured meshes does not lead to the desired behavior. This is shown in Fig. 14. In Fig. 14a, the craze
path and e�ective stress distribution are shown, as obtained with a relatively coarse mesh. Although the
craze does propagate in the horizontal direction in some average sense, there is a clear tendency to meander.
The craze deviates from its current path when a cohesive surface element is encountered with a more fa-
vorable direction. From Fig. 14b, it is seen that mesh re®nement does not necessarily improve the situation.

Clearly, the orientation of the mesh determines the craze path to a large extent if structured meshes are
used. To explore this further, we have constructed fully unstructured meshes by randomizing the mesh.
Such a mesh should, upon mesh re®nement, provide enough freedom for the craze to follow a `correct'
path. In Fig. 15, the propagation of a craze is shown for increasing values of the SIF. The propagation of
the craze is a result of the competition between unloading of the bulk due to widening of existing crazes and
the initiation of new crazes. A number of small craze branches are generated during propagation. The
aforementioned competition in the end determines the ultimate path. Due to the random orientation of the
cohesive surface elements, the craze is now better able to follow the horizontal path that is expected from
symmetry.

5.2. Crack growth resistance curves

The energy needed for the crack to propagate is determined by the path that is chosen by the craze tip.
Craze branching in amorphous polymers with an inhomogeneous microstructure may therefore increase the
toughness. Lee et al. (1987) have shown experimentally that the increase in fracture toughness of many
engineering polymers derives from the formation of multiple crazes at crack tips. In a fully unstructured
mesh, the competition between various craze branches determines the ®nal craze path and therefore may
a�ect the predicted crack growth resistance.

In Fig. 16, a comparison is made between the crack growth resistance for the case in which the craze
follows the ideal horizontal path by introducing only a single row of cohesive surface elements ahead of the
crack (Section 4) and the case in which the craze must determine its path through a fully unstructured mesh.
Upon mesh re®nement, it is seen that an increase in crack growth resistance is achieved (roughly 5%). It was
shown earlier that the fully unstructured meshes are capable of resolving an almost horizontal craze path so
that the increase in crack growth resistance must be attributed to the many craze branches.

The crack growth resistance curve is in¯uenced by the elastic sti�nesses ka. Tijssens et al. (2000) pointed
out that a cohesive surface should have an elastic sti�ness that is much larger than the elastic sti�ness of the
surrounding continuum since otherwise the elastic properties of the combination of elastic continuum and
cohesive surfaces do not accurately represent the original elastic properties of the continuum. In a one-
dimensional setting, it is readily shown that the additional compliance due to cohesive surfaces of sti�ness
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kn at a spacing l is of the order E=�knl� relative to unity. This holds, approximately, also in a two-
dimensional network with average mesh size l. Hence, as long as E=�knl� � 1, the additional elastic com-
pliance due to the cohesive surfaces can be neglected. In Fig. 17, a comparison is made between the crack
growth resistance curves for three meshes in which a craze is represented by 6, 12 or 24 cohesive surface
elements. Only one row of cohesive surface elements in front of the crack tip is used, for which E=�knl� is
equal to 0:02 or 0:002. The elastic sti�nesses ka in this paper are chosen without reference to experiments. It
is evident from Fig. 17 that for too coarse meshes, the sti�nesses can still have a signi®cant in¯uence on the
crack growth resistance even if E=�knl� is small enough. However, we also observe that the in¯uence of ka

diminishes when steady state crack growth is approached. The dependence of the crack growth resistance
on the elastic sti�ness ka disappears when a single craze is represented by roughly 25 cohesive surface
elements.

Warren et al. (1989) showed that the stress distribution around a craze is extremely sensitive to the
precise opening pro®le of the craze. They argued that the stress ®eld around a craze cannot be calculated
from experimentally measured craze opening pro®les using Fourier transform, boundary integral or ®nite

Fig. 14. Craze propagation and distribution of e�ective stress re in (a) a coarse mesh and (b) a ®ne mesh in which still a clear structure

exists.
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element techniques due to the boundary value problem being ill-conditioned. They showed that small er-
rors, falling within the experimental tolerance, cause a signi®cant change in the calculated stress ®eld. No
assumption on opening pro®les is made in our calculations, and Fig. 18 clearly demonstrates that upon

Fig. 15. Craze propagation and distribution of e�ective stress re in an unstructured mesh. Material parameters are as stated in Table 1:

(a) KI � 24:0 MPamm1=2, (b) KI � 26:1 MPa mm1=2, (c) KI � 27:1 MPa mm1=2 and (d) KI � 27:7 MPa mm1=2.

Fig. 16. Crack growth resistance curve for a fully unstructured mesh and for a single row of cohesive surface elements in front of the

initial crack tip for (i) a coarse mesh and (ii) a ®ne mesh.
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mesh re®nement the opening pro®le of the craze does not change signi®cantly. However, the stress dis-
tribution in the neighborhood of the craze converges only for very ®ne meshes because of the traction
gradients near the craze and crack tip. The stress distribution in¯uences the crack growth resistance
through the competition between crazing and unloading of the surrounding bulk. For an accurate de-
scription of the crack growth resistance, very ®ne meshes are therefore needed, as is shown in Fig. 17.

6. E�ect of cross-tie ®brils

Crazes are known to have a complex structure in which long ®brils, spanning the gap between both
bulk±craze interfaces, are interconnected by cross-tie ®brils. The cross-tie ®brils give the craze some tan-
gential load carrying capacity. In Section 5, it was argued that a cohesive surface must not alter the initial
elastic properties of the continuum too much and must therefore have a large (initial) sti�ness. However,
physically, a well-developed craze has a relatively low (but ®nite) tangential sti�ness due to the presence of
the cross-tie ®brils. The precise way in which the tangential sti�ness evolves as the craze widens will depend
on the mechanism that is responsible for creating cross-tie ®brils. Chain scission and disentanglement will
certainly play a role (Kramer and Berger, 1990), but the precise kinetics are still unknown and detailed
studies on craze widening such as in Van der Giessen and Lai (1997) are needed to provide this information.

The in¯uence of the cross-tie ®brils reaches beyond the tangential load carrying capacity. Brown (1991)
was the ®rst to show the important role of the cross-tie ®brils in creating a stress concentration at the crack
tip of a magnitude large enough to cause scission of molecular chains. Hui et al. (1992) and later Sha et al.
(1997) further explored the role of the cross-tie ®brils with a detailed model of a craze. The description of
crazing in a cohesive surface aims at a length scale at which the complex cross-tie ®bril network of the craze
is no longer visible. Only the capability of the craze to transmit traction from one bulk-craze interface to the
other is captured in an e�ective traction±separation law. In a cohesive surface model, the role of the cross-
tie ®brils in both the tangential load carrying capacity and the breakdown of the craze should therefore be
incorporated through a dependence on the tangential separation Dt. This scale transition from the detailed
craze structure to the cohesive surface length scale has not been made as yet. In order to understand the
in¯uence of cross-tie ®brils, we will brie¯y investigate the in¯uence of the evolution of the tangential co-
hesive sti�ness and the craze breakdown modeling on the predicted crack growth resistance curves.

Fig. 17. Crack growth resistance curves for symmetric meshes with only one row of cohesive surfaces in front of the crack tip. Number

of cohesive surface elements representing a craze equals (i) 6, (ii) 12 and (iii) 24.
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6.1. Tangential separation mode

The tangential sti�ness evolution is described by Eq. (8). All previous calculations were performed with
parameters c1 � 100 and c2 � 0:3. In Fig. 19, crack growth resistance curves are given for various values of
c1 and c2. The value of c1 determines the rate at which the sti�ness kt drops to zero, whereas c2 determines
for which value of the plastic normal separation, this drop occurs, as shown in Fig. 4. The result for a

Fig. 18. Craze opening pro®les and distribution of e�ective stress re for progressively ®ner meshes and total crack extension

Da=cD � 7:5 mm. Number of cohesive surface elements representing a craze equals (i) 6, (ii) 12 and (iii) 24, as in Fig. 17.
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constant tangential sti�ness that only falls o� as the craze breaks down is also shown in Fig. 19. The
calculations were done with the fully unstructured mesh (i) in Fig. 16.

In Section 5.2, we showed that when using a fully unstructured mesh, craze branches can be captured
that cause an increase in crack growth resistance of roughly 5%. When varying the constants c1 and c2 in
Eq. (8), it is clear from Fig. 16 that the crack growth resistance curves are almost the same. The upper and
lower curve deviate less then 5% from each other. This suggests that the precise way in which the tangential
sti�ness decreases with the plastic craze separation Dc

n does not dominate the solution.

6.2. Breakdown of crazes

In the cohesive surface model, a craze breaks down when a material dependent maximum separation of
the craze-bulk interfaces has occurred (Section 2.1). The sudden breakdown of ®brils is captured in the
model by a sudden loss of load carrying capacity in a cohesive surface integration point. For reasons of
numerical stability, cohesive tractions Ta and sti�nesses ka are decreased to zero in a predetermined number
of increments. This rather crude description of craze breakdown may a�ect the outcome of the crack
growth resistance curves in a quantitative sense.

In Fig. 20, the in¯uence of the number of increments used to reach complete breakdown of the craze on
the crack growth resistance curves is illustrated using results of calculations with a single cohesive surface
laid out in front of the initial crack tip. Breakdown is taken to occur in a number of increments between 10
and 160. All previous calculations were performed with the number of increments in which full breakdown
occurs set to 40. If craze breakdown is mainly governed by the presence of imperfections like dust-inclu-
sions, immediate breakdown of the craze can be expected over a width of the same order of magnitude as
the dimension of the imperfection. It is expected therefore that a better description of craze breakdown is
obtained when the number of increments used to reach full breakdown is rather small, although this in-
evitably is related to the mesh density. The denser the mesh is, the better the numerical scheme captures the
essential features of craze breakdown. From Fig. 20, it is clear that using too many increments results in a
higher steady-state value of the mode I stress intensity factor due to the extended load-carrying capacity of
the craze. For less then 40 increments, the resulting crack growth resistance is no longer signi®cantly de-
pendent on it anymore.

Fig. 19. In¯uence of the evolution of the tangential sti�ness on the predicted crack growth resistance curve. Values of the parameters c1

and c2 in Eq. (8) as indicated are illustrated in Fig. 4.
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7. Conclusion

Craze and crack propagation has been studied under mode I near-tip conditions using a recently pro-
posed cohesive surface model for crazing in amorphous polymers. Crack growth resistance has been an-
alyzed for a range of values of key material parameters.

For a constant loading rate, the crack growth resistance is found to diminish for relatively short crazes.
This is consistent with the traditional Dugdale-like cohesive zone model which can be regarded as an ideal
rate-independent craze. However, when the viscoplastic drawing process during craze widening becomes
more important, a reversal of the previously noted trend can occur, i.e. a higher steady state mode I stress
intensity factor despite a shorter craze length. This indicates that the Dugdale cohesive surface model
cannot be used to describe crazing in these circumstances. Our calculations indicate that this is the case for
temperatures around room temperature (T � 293 K) and loading rates higher then 0.1 MPa mm1=2 sÿ1

(lowest loading rate used in our calculations). Comparisons with experiments do not seem possible at this
stage unfortunately. Experimental investigations often only report the value of the mode I SIF and rate
dependency seems to be excluded a priori.

The cohesive surface methodology is shown to produce mesh independent results once the crazing
process is resolved su�ciently accurate. Mesh orientation and density e�ects are important only if the
orientation of cohesive surface elements is not statistically random. Upon mesh re®nement, a correct craze
path is obtained as a result of the competition between initiation of new crazes, the widening of existing
crazes and the corresponding relaxation of the bulk.
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